Robust Parallel Algorithm for Anisotropic Adaptive Tetrahedral Meshes

Konstantin Lipnikov

Yuri Vassilevski

LANL

Los Alamos, NM

lipnikov@lanl.gov

INM/LAM1

Moscow/Augsburg

vasilevs@dodo.inm.ras.ru

Contents

- Objectives
- Quasi-optimal meshes
- Parallel mesh adaptation
- Numerical experiments
- Conclusions

Objectives

Notation and assumptions.

- $\blacksquare u \in C^2(\Omega)$ (may be relaxed to $u \in W_1^2(\Omega)$);
- \blacksquare Ω^h is a conformal mesh consisting of simplexes;
- \blacksquare N_T is a fixed number of simplexes.

<u>Definition</u>. Ω^h is the optimal mesh if

$$\Omega^h = \arg \min_{\Omega^h: \#T = N_T} \|u - P^h u\|_{L_{\infty}(\Omega)}.$$

Existence. If $||u - P^h u||_{L_{\infty}(\Omega)}$ is (a) continuous functional of the nodes coordinates and (b) non-increasing functional for the case of nested grids, then the optimal triangulation consisting of N_T simplexes *exists*.

 $u \in C^2(\bar{\Omega})$ and P^h is the piece-wise linear interpolation operator, i.e. $P^h = P_{\Omega^h}$.

Quasi-optimal meshes (1/4)

Let G be a constant metric defined on a simplex Δ and h^* be a real positive number.

 \blacksquare Quality of a triangle \triangle in metric G is defined by

$$Q_{G,h^{\star}}(\Delta) = 12\sqrt{3} \frac{|\Delta|_{G}}{|\partial\Delta|_{G}^{2}} F\left(\frac{|\partial\Delta|_{G}}{3h^{\star}}\right)$$

where

$$F(x) = \left(\min\left\{x, \frac{1}{x}\right\} \left(2 - \min\left\{x, \frac{1}{x}\right\}\right)\right)^{3}.$$

 \blacksquare Quality of a tetrahedron \triangle in metric G is defined by

$$Q_{G,h^{\star}}(\Delta) = 6^4 \sqrt{2} \frac{|\Delta|_G}{|\partial \partial \Delta|_G^3} F\left(\frac{|\partial \partial \Delta|_G}{6h^{\star}}\right).$$

Quasi-optimal meshes (2/4)

Function F(x).

Quasi-optimal meshes (3/4)

The quality of triangulation Ω^h consisting of N_T simplexes in metric G(x) is

$$Q_{G,N_T}(\Omega^h) = \min_{\Delta \in \Omega^h} Q_{G_\Delta,h^*}(\Delta)$$

where

$$G_{\Delta} = G(\arg \max_{x \in \Delta} detG(x))$$

and

$$h^{\star} = \sqrt{\frac{4|\Omega|_G}{\sqrt{3}N_T}} \qquad \left(h^{\star} = \sqrt[3]{\frac{12|\Omega|_G}{\sqrt{2}N_T}} \quad \text{in } 3D\right).$$

(P. Zavattieri, E. Dari, and G. Buscaglia, 1996)

Definition. Triangulation Ω^h consisting of N_T simplexes is called quasi-optimal (with respect to u) if

$$Q_{|H|,N_T}(\Omega^h) \ge Q_0, \quad Q_0 = O(1),$$

where H is the Hessian (matrix of second derivatives) of u.

 \blacksquare Existence of a QOM depends on the value of Q_0 .

Quasi-optimal meshes (4/4)

Quasi-optimal mesh Ω^h is an approximation to the optimal mesh Ω^h_{opt} .

Let $det H(x) \neq 0 \quad \forall x \in \Omega$ and

$$||H_{ps} - H_{\Delta,ps}||_{L_{\infty}(\Delta)} < q|\lambda_1(H_{\Delta})|, \qquad 0 < q < 1/2,$$

for all $\Delta \in \Omega^h_{opt}$ and $\Delta \in \Omega^h$ where the maximal error is attained. Then

$$||u - P_{\Omega^h} u||_{L_{\infty}(\Omega)} \le C(Q_0, q) ||u - P_{\Omega_{opt}^h} u||_{L_{\infty}(\Omega)}.$$

Both the optimal mesh and quasi-optimal meshes satisfy:

$$C_1(Q_0,q)\frac{|\Omega|_{|H|}}{N_T} \le ||u - P_{\Omega^h}u||_{L_{\infty}(\Omega)} \le C_2(Q_0,q)\frac{|\Omega|_{|H|}}{N_T} \qquad \text{(in } 2D),$$

$$C_1(Q_0,q) \left(\frac{|\Omega|_{|H|}}{N_T}\right)^{2/3} \le \|u - P_{\Omega^h} u\|_{L_{\infty}(\Omega)} \le C_2(Q_0,q) \left(\frac{|\Omega|_{|H|}}{N_T}\right)^{2/3} \quad \text{(in } 3D)$$

Mesh adaptation algorithm

Initialization Step. Generate an initial triangulation Ω^h . Choose the final mesh quality Q_0 , $Q_0 < 1$, and the final number N_T of mesh elements.

Iterative Step.

- 1. Compute the discrete solution $P^h u$ for triangulation Ω^h .
- 2. Recover the discrete Hessian H^h from $P^h u$. Stop iterations if $Q_{|H^h|,N_T}(\Omega^h) \geq Q_0$.
- 3. Generate the next mesh $\tilde{\Omega}^h$ such that $Q_{|H^h|,N_T}(\tilde{\Omega}^h) \geq Q_0$.
- 4. Set $\Omega^h = \tilde{\Omega}^h$ and go to 1.

convergence analysis of the iterative step can be found in Comput. Math. Math. Phys., V.39, No.9, 1999, pp.1468–1468.
East-West Journal, V.7, No.4, pp.223–244.

Mesh adaptation algorithm

Initialization Step. Generate an initial triangulation Ω^h . Choose the final mesh quality Q_0 , $Q_0 < 1$, and the final number N_T of mesh elements.

Iterative Step.

- 1. Compute the discrete solution $P^h u$ for triangulation Ω^h .
- 2. Recover the discrete Hessian H^h from P^hu . Stop iterations if $Q_{|H^h|,N_T}(\Omega^h) \geq Q_0$.
- 3. Generate the next mesh $\tilde{\Omega}^h$ such that $Q_{|H^h|,N_T}(\tilde{\Omega}^h) \geq Q_0$.
- 4. Set $\Omega^h = \tilde{\Omega}^h$ and go to 1.

convergence analysis of the iterative step can be found in Comput. Math. Math. Phys., V.39, No.9, 1999, pp.1468–1468.
East-West Journal, V.7, No.4, pp.223–244.

Parallel mesh adaptation (1/4)

Assumptions.

- 1. Each processor may keep the global mesh.
- 2. Parallel computer has a few processors.
- 3. A mesh can be easily distributed among processors and gathered back.

mesh with 10^6 tets require about 34M of processor memory

Parallel mesh adaptation (2/4)

Algorithm of generation of $|H^h|$ -QOM.

- Initialization Step. Processor root computes and broadcasts the discrete Hessian H^h to other processors. Set k=1. Processor root computes three orthogonal directions, \vec{b}_k , k=1,2,3, of the inertia tensor of Ω^h .
- **Decomposition Step** (k < 4). Processor root extracts mesh elements such that $Q_{|H^h|,h^*}(\Delta) < Q_0$ and their neighbors. The extracted mesh is colored slice-wise $(\perp \vec{b}_k)$ and broadcasted to other processors.
- **Decomposition Step** (k = 4). Processor root extracts the mesh elements whose vertices were fixed for k = 1, 2, 3. All the extracted mesh elements are assigned to the processor root.
- **Generation Step.** Processor p extracts the p-th subgrid and tries to construct a $|H^h|$ -quasi-optimal mesh. The boundary triangles shared by any two subgrids are not modified.
- **Gathering Step.** Processor root gathers the subgrids and builds a conforming global grid $\tilde{\Omega}^h$. We stop if $Q_{|H^h|,N_T}(\tilde{\Omega}^h) \geq Q_0$; otherwise, we set k := k+1, $\Omega^h = \tilde{\Omega}^h$ and go to Decomposition Step.

Parallel mesh adaptation (3/4)

Decomposition steps for the case of 2 processors:

Parallel mesh adaptation (4/4)

To construct a $|H^h|$ -quasi-optimal mesh we generate a sequence of grids

$$\Omega^h, \ \Omega^h_1, \ \Omega^h_2, \dots, \Omega^h_{l_{\max}}$$

such that

$$Q_{|H^h|,N_T}(\Omega^h) \le Q_{|H^h|,N_T}(\Omega_1^h) \le \ldots \le Q_{|H^h|,N_T}(\Omega_{l_{\max}}^h).$$

- Take the worst simplex with its neighbors.
- Try to apply one of admissible mesh modifications (add a point, swap face to edge, delete a point, move a point) to increase $Q_{|H^h|,N_T}(\Omega_l^h)$.
- If all operations fail, we add the simplex to a list of failed simplexes. If the list is too big, all failed simplexes are released.

Numerical experiments (1/8)

	$Q_{ H_k ,N_T}^h(\Omega_k^h) \simeq 0.1$	$\hat{\Omega}^h$ optimal	$\tilde{\Omega}^h Q_{ H ,N_T} = 1$	$reve{\Omega}^h$ PLTMG nodes
#Tr	600	608	569	686
$arepsilon_{ ext{max}}$	0.216	0.065	0.167	0.404
$arepsilon_{mean}$	0.067	0.037	0.063	0.086

Numerical experiments (2/8)

2D experiment: compressible irrotational isotropic adiabatic flow of an ideal gas around a wing.

$$\operatorname{div}\left(1 - \frac{|\nabla u|^2}{c}\right)^{\alpha} \nabla u = 0 \quad \text{in} \quad \Omega$$

$$\frac{\partial u}{\partial n} = \mathbf{v}_{\infty} \cdot \mathbf{n} \quad \text{on} \quad \Gamma_{ext}$$

$$\frac{\partial u}{\partial n} = 0 \quad \text{on} \quad \Gamma_{wing}$$

$$[\frac{\partial u}{\partial \tau}] = 0, \quad [u] = Cir \quad \text{on} \quad \Gamma_{slit}$$

Numerical experiments (3/8)

Numerical experiments (4/8)

3D experiment: point and anisotropic edge singularities.

$$-\Delta u = f \quad \text{in} \quad \Omega = (0,1)^3 \setminus [0,0.5]^3$$
 $u = 0 \quad \text{on} \quad \partial \Omega$
 $f(x) = \frac{1}{|x - x_0|}, \quad x_0 = (0.5, 0.5, 0.5)$

3D experiment: anisotropic boundary layers.

$$-10^{-2}\Delta u + \frac{\partial u}{\partial x_1} = 1 \quad \text{in} \quad \Omega = (0,1)^3 \setminus [0,0.5]^2 \times (0,1)$$

$$u = 0 \quad \text{on} \quad \partial \Omega$$

Numerical experiments (5/8)

Adaptive grid for the 1st problem.

Numerical experiments (6/8)

Quasi-optimal mesh for the 2nd problem colored by solution values.

Maximal aspect ratio of tetrahedra is about 100.

Numerical experiments (7/8)

Mesh refinement:

Problem 1:

#T	9735	19359	36134	52079	160944
$\varepsilon = u - u_h _{\infty}$	0.025	0.017	0.0095	0.0066	0.0024
$\varepsilon \cdot \#T^{2/3}$	11.3	12.2	10.3	9.1	7.0

Problem 2:

#T	9531	18798	36175	70344	140392
$\varepsilon = u - u_h _{\infty}$	0.057	0.031	0.022	0.016	0.010
$\varepsilon \cdot \#T^{2/3}$	25.5	21.8	23.9	27.1	26.8

Convergence of adaptive iterations:

Numerical experiments (8/8)

Number of mesh modifications and speed-up.

 $\#T \sim 160000$.

	p=1	p = 2		p=4		p = 8	
L	#mod	#mod	spd	#mod	spd	#mod	spd
1	30403	16204	1.8	8752	3.4	5484	4.2
2	30850	18273	1.5	12340	2.7	6937	3.7
10	32986	13776	2.9	4996	7.5	1445	12.2

 $\#T \sim 140000$.

$oxed{L}$	p=2	p=4	p = 8
1	1.9	4.2	7.8
10	3.6	9.0	15
20	3.4	10.7	26.6

Conclusions

- There are a few theoretical results for algorithms of generation of quasi-optimal meshes.
- Simple 1D (slice-wise) domain decomposition is acceptable for parallel computers with a small number of processors.
- The most expensive stage of the parallel algorithm is the generation of quasi-optimal subgrids. Communications expenses are negligent.
- The parallel mesh generation may result in super liner speed-up.

Conclusions

- There are a few theoretical results for algorithms of generation of quasi-optimal meshes.
- Simple 1D (slice-wise) domain decomposition is acceptable for parallel computers with a small number of processors.
- The most expensive stage of the parallel algorithm is the generation of quasi-optimal subgrids. Communications expenses are negligent.
- The parallel mesh generation may result in super liner speed-up.

2D and 3D FORTRAN codes are available for research purposes.